羟基红花黄色素A对缺血性脑卒中神经保护作用及机制的研究进展

刘环环, 李瑞青, 高静, 袁洁, 苏凯奇, 冯晓东

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (10) : 773-778.

PDF(1133 KB)
PDF(1133 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (10) : 773-778. DOI: 10.11669/cpj.2022.10.001
综述

羟基红花黄色素A对缺血性脑卒中神经保护作用及机制的研究进展

  • 刘环环1, 李瑞青1,2,3, 高静1,2,3, 袁洁1, 苏凯奇1, 冯晓东1,2*
作者信息 +

Research Progress on the Neuroprotective Mechanism of Hydroxysafflor Yellow A on Ischemic Stroke

  • LIU Huan-huan1, LI Rui-qing1,2,3, GAO Jing1,2,3, YUAN Jie1, SU Kai-qi1, FENG Xiao-dong1,2*
Author information +
文章历史 +

摘要

缺血性脑卒中是因血管栓塞导致局部脑血流急剧减少或中断引起的脑组织缺血缺氧损伤,常伴有严重的神经功能障碍。羟基红花黄色素A是活血化瘀药红花的主要成分之一。现代药理学研究发现,它在缺血性心脑血管疾病中发挥神经保护作用可缓解缺血再灌注造成的各种损伤,但其发挥作用的具体机制仍不清楚。通过检索红花在脑卒中应用的相关文献,笔者就羟基红花黄色素A在缺血性脑卒中发挥保护作用的机制包括抗氧化应激、抑制神经炎症反应、抗细胞凋亡、保护血脑屏障及促进突触可塑性等方面进行综述。以期为羟基红花黄色素A作为神经保护药物在脑卒中的临床应用中提供理论支持。

Abstract

Ischemic stroke is the ischemia and hypoxia damage of brain tissue caused by the rapid decrease or interruption of local cerebral blood flow caused by vascular embolism, and it is often accompanied by severe neurological dysfunction. Hydroxysafflor yellow A is one of the main components of safflower, a medicine for promoting blood circulation and removing blood stasis. Modern pharmacological studies have found that it exerts a neuroprotective effect in ischemic cardiovascular and cerebrovascular diseases and can alleviate various injuries caused by ischemia-reperfusion, but the specific mechanism of its action is still unclear. By searching the relevant literatures about the application of safflower yellow in stroke, this article discusses the mechanism of hydroxysafflor yellow A in ischemic stroke including anti-oxidative stress, inhibition of neuroinflammatory response,anti-apoptosis,and protecting the blood-brain barrier and the promotion of synaptic plasticity are reviewed. It is expected to provide theoretical support for the clinical application of hydroxysafflor yellow A as a neuroprotective drug in stroke.

关键词

羟基红花黄色素A / 缺血性脑卒中 / 神经保护

Key words

hydroxysafflor yellow A / ischemic stroke / neuroprotection

引用本文

导出引用
刘环环, 李瑞青, 高静, 袁洁, 苏凯奇, 冯晓东. 羟基红花黄色素A对缺血性脑卒中神经保护作用及机制的研究进展[J]. 中国药学杂志, 2022, 57(10): 773-778 https://doi.org/10.11669/cpj.2022.10.001
LIU Huan-huan, LI Rui-qing, GAO Jing, YUAN Jie, SU Kai-qi, FENG Xiao-dong. Research Progress on the Neuroprotective Mechanism of Hydroxysafflor Yellow A on Ischemic Stroke[J]. Chinese Pharmaceutical Journal, 2022, 57(10): 773-778 https://doi.org/10.11669/cpj.2022.10.001
中图分类号: R96   

参考文献

[1] VIRANI S S, ALONSO A, BENJAMIN E J, et al. Heart disease and stroke statistics-2020 update: a report from the American Heart Association[J]. Circulation, 2020, 141(9):e139-e596.
[2] DAVIS C K, G K R. Postischemic supplementation of folic acid improves neuronal survival and regeneration in vitro[J]. Nutr Res, 2020, 75:1-14.
[3] XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms[J]. Mol Neurobiol, 2020, 57(10):4218-4231.
[4] MAGUFIS G, SAFOURIS A, RAPHAELI G, et al. Acute reperfusion therapies for acute ischemic stroke patients with unknown time of symptom onset or in extended time windows: an individualized approach[J]. Ther Adv Neurol Disord, 2021, 14:17562864211021182.Doi:10.1177/17562864211021182.
[5] ZHONG G S. Chinese Materia Medica(中药学)[M]. Beijing: China Press of Traditional Chinese Medicine Co., Ltd., 2016:432-433.
[6] ZHAO F, WANG P, JIAO Y, et al. Hydroxysafflor Yellow A: A systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects[J]. Front Pharmacol, 2020, 11:579332.Doi:10.3389/fphar.2020.579332.
[7] YE J, LU S, WANG M, et al. Hydroxysafflor yellow a protects against myocardial ischemia/reperfusion injury via suppressing NLRP3 inflammasome and activating autophagy[J]. Front Pharmacol, 2020, 11:1170. Doi:10.3389/fphar.2020.01170.
[8] ADAMSKA I, BIERNACKA P. Bioactive substances in safflower flowers and their applicability in medicine and health-promoting foods[J]. Int J Food Sci, 2021, 2021:6657639.Doi:10.1155/2021/6657639.
[9] DENG L, WAN H, THOU H F, et al. Protective effect of hydroxysafflor yellow A alone or in combination with acetylglutamine on cerebral ischemia reperfusion injury in rat: a pet study using 18F-fuorodeoxyglucose[J]. Eur J Pharmacol, 2018, 825:119-132.
[10] SUN Y, XU D P, QIN Z, et al. Protective cerebrovascular effects of hydroxysafflor yellow A(HSYA) on ischemic stroke[J]. Eur J Pharmacol, 2018, 818:604-609.
[11] YANG X, CHEN L, LI Y, et al. Protective effect of hydroxysaffl or yellow A on cerebral ischemia reperfusion-injury by regulating GSK3β-mediated pathways[J]. Neurosci Lett, 2020, 736:135258.Doi:10.1016/j.neulet.2020.135258.
[12] PROFACI CP, MUNJI R N, PULIDO R S, et al. The blood-brain barrier in health and disease: important unansweredquestions[J]. J Exp Med, 2020, 217(4):e20190062.Doi:10.1084/jem.20190062.
[13] NIAN K, HARDING I C, HERMAN I M, et al. Blood-brain barrier damage in ischemic stroke and its regulation by endothelial mechanotransduction[J]. Front Physiol, 2020,11:605398. Doi: 10.3389/fphys.2020.605398.
[14] YANG C, HAWKINS K E, DORÉ S, et al. Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke[J]. Am J Physiol Cell Physiol, 2019, 316(2):C135-C153.
[15] SUN L, YANG L, XU Y W, et al. Neuroprotection of hydroxysafflor yellow A in the transient focal ischemia: inhibition of protein oxidation/nitration, 12/15-lipoxygenase and blood-brain barrier disruption[J]. Brain Res, 2012, 1473:227-235.
[16] LV Y, FU L. The potential mechanism for hydroxysafflor yellow A attenuating blood-brain barrier dysfunction via tight junction signaling pathways excavated by an integrated serial affinity chromatography and shotgun proteomics analysis approach[J]. Neurochem Int, 2018, 112:38-48.
[17] HANSEL C. Deregulation of synaptic plasticity in autism[J]. Neurosci Lett, 2019, 688:58-61.
[18] XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms[J]. Mol Neurobiol, 2020, 57(10):4218-4231.
[19] YU L, DUAN Y, ZHAO Z, et al. Hydroxysafflor yellow A(HSYA) improves learning and memory in cerebral ischemia reperfusion-injured rats via recovering synaptic plasticity in the hippocampus[J]. Front Cell Neurosci, 2018, 12:371. Doi:10.3389/fncel.2018.00371.
[20] HOU J, WANG C, ZHANG M, et al. Safflower yellow improves the synaptic structural plasticity by ameliorating the disorder of glutamate circulation in Aβ1-42-induced AD model rats[J]. Neurochem Res, 2020, 45(8):1870-1887.
[21] PANG J, HOU J, ZHOU Z, et al. Safflower yellow improves synaptic plasticity in APP/PS1 mice by regulating microglia activation phenotypes and BDNF/TrkB/ERK signaling pathway[J]. Neuromolecular Med, 2020, 22(3):341-358.
[22] HE J, LIU J, HUANG Y, et al. Oxidative stress, inflammation, and autophagy: potential targets of mesenchymal stem cells-based therapies in ischemic stroke[J]. Front Neurosci, 2021, 15:641157. Doi: 10.3389/fnins.2021.641157.
[23] SIRACUSA R, FUSCO R, CUZZOCREA S. Astrocytes: role and functions in brain pathologies[J]. Front Pharmacol, 2019,10:1114. Doi: 10.3389/fphar.2019.01114.
[24] WANG L, NIU H, ZHANG J. Homocysteine induces mitochondrial dysfunction and oxidative stress in myocardial ischemia/reperfusion injury through stimulating ROS production and the ERK1/2 signaling pathway[J]. Exp Ther Med, 2020, 20(2):938-944.
[25] GUO Z, MO Z. Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases[J]. J Tissue Eng Regen Med, 2020, 14(6):869-883.
[26] FANGMA Y, ZHOU H, SHAO C, et al. Hydroxysafflor yellow A and anhydrosafflor yellow B protect against cerebral ischemia/reperfusion injury by attenuating oxidative stress and apoptosis via the silent information regulator 1 signaling pathway[J]. Front Pharmacol, 2021,12:739864. Doi: 10.3389/fphar.2021.739864.
[27] RAMAGIRI S, TALIYAN R. Neuroprotective effect of hydroxy safflor yellow A against cerebral ischemia-reperfusion injury in rats: putative role of mPTP[J]. J Basic Clin Physiol Pharmacol, 2016, 27(1):1-8.
[28] HUANG P, WU S P, WANG N, et al. Hydroxysafflor yellow A alleviates cerebral ischemia reperfusion injury by suppressing apoptosis via mitochondrial permeability transition pore[J]. Phytomedicine, 2021, 85:153532. Doi: 10.1016/j.phymed.2021.153532.
[29] GURUSWAMY R, ELALI A. Complex roles of microglial cells in ischemic stroke pathobiology: new insights and future directions[J]. Int J Mol Sci, 2017, 18(3):496. Doi: 10.3390/ijms18030496.
[30] JAYARAJ RL, AZIMULLAH S, BEIRAM R, et al. Neuroinflammation: friend and foe for ischemic stroke[J]. J Neuroinflammation, 2019, 16(1):142.
[31] LI X, XIA Q, MAO M, et al. Annexin-A1 SUMOylation regulates microglial polarization after cerebral ischemia by modulating IKKα stability via selective autophagy[J]. Sci Adv, 2021, 7(4):eabc5539. Doi: 10.1126/sciadv.abc5539.
[32] YANG XW, LI YH, ZHANG H, et al. Safflower yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells[J]. Int J Immunopathol Pharmacol, 2016, 29(1):54-64.
[33] WANG Q, LIU M Z, CHEN M Y, et al. Effect of hydroxysafflor yellow A on COX-2/PGD2/DPs pathway in cortex of mice with cerebral ischemia-reperfusion injury[J]. Chin Pharmacol Bull(中国药理学通报), 2021, 37(8):1063-1067.
[34] KIRDAJOVA D B, KRISKA J, TURECKOVA J, et al. Ischemia-triggered glutamate excitotoxicity from the perspective of glial cells[J]. Front Cell Neurosci, 2020, 14:51. Doi: 10.3389/fncel.2020.00051.
[35] PLUTA R, JANUSZEWSKI S, CZUCZWAR S J. Neuroinflammation in post-Ischemic neurodegeneration of the brain: friend, foe, or both?[J]. Int J Mol Sci, 2021, 22(9):4405. Doi: 10.3390/ijms22094405.
[36] VIANA G S B, VALE E M D, ARAUJO A R A, et al. Rapid and long-lasting antidepressant-like effects of ketamine and their relationship with the expression of brain enzymes, BDNF, and astrocytes[J]. Braz J Med Biol Res, 2020, 54(2):e10107. Doi: 10.1590/1414-431X202010107.
[37] XU H, LIU T, WANG W, et al. Proteomic analysis of hydroxysafflor yellow A against cerebral ischemia/reperfusion injury in rats[J]. Rejuvenation Res, 2019, 22(6):503-512.
[38] LIU J, WANG Q, YANG S, et al. Electroacupuncture inhibits apoptosis of peri-ischemic regions via modulating p38, extracellular signal-regulated kinase(ERK1/2), and c-Jun N terminal kinases(JNK) in cerebral ischemia-reperfusion-injured rats[J]. Med Sci Monit, 2018, 24:4395-4404.
[39] JUNG Y S, OH A Y, PARK H P, et al. Post-ischemic administration of pravastatin reduces neuronal injury by inhibiting Bax protein expression after transient forebrain ischemia in rats[J]. Neurosci Lett, 2015, 594:87-92.
[40] CHANG L L, LI C, LI Z L, et al. Carthamus tinctorius L. Extract ameliorates cerebral ischemia-reperfusion injury in rats by regulating matrix metalloproteinases and apoptosis[J]. Indian J Pharmacol, 2020, 52(2):108-116.
[41] SHAO Z Q, DOU S S, ZHU J G, et al. Apelin-13 inhibits apoptosis and excessive autophagy in cerebral ischemia/reperfusion injury[J]. Neural Regen Res, 2021,16(6):1044-1051.
[42] YANG G, WANG N, SETO S W, et al. Hydroxysafflor yellow A protects brain microvascular endothelial cells against oxygen glucose deprivation/reoxygenation injury: Involvement of inhibiting autophagy via class I PI3K/Akt/mTOR signaling pathway[J]. Brain Res Bull, 2018,140:243-257.

基金

国家自然科学基金项目资助(U2004131, 82174473, 82104973);河南省科技攻关项目资助(212102311117,222102310715)
PDF(1133 KB)

Accesses

Citation

Detail

段落导航
相关文章

/